

Current Transducer LF 2005-S/SP13

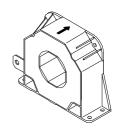
For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

	_				
F	ec	:tri	ical	l da	ıta

I _{PN}	Primary nominal curre	ent rms	2000		Α
I _{PM}	Primary current, meas	Primary current, measuring range		500	Α
Î	Overload capability @	10 ms	20		kΑ
$\dot{R}_{_{\mathrm{M}}}$	Measuring resistance		$\mathbf{R}_{_{ ext{M mini}}}$	$R_{_{Mma}}$	axi
	with ± 15 V	@ $\pm 2000 A_{maxi}$	0	4	Ω
	with ± 24 V	@ $\pm 2000 A_{maxi}$	0	23	Ω
		@ ± 3100 A maxi	0	6	Ω
		@ ± 3500 A maxi	0	2	Ω
I _{SN}	Secondary nominal co	Secondary nominal current rms			mΑ
K _N	Conversion ratio		1:5000	0	
v c	Supply voltage 1)		± 15	24	V
ľ	Current consumption	(± 1)	33 (@ ± 2	24V) + I	, mA

Accuracy - Dynamic performance data

_ /\ `	boardoy Dynamilo portormano	o data			
\mathbf{X}_{G}	Overall accuracy @ I _{PN} , T _A = 25°C		± 0.3		%
$\mathbf{e}_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Linearity error		< 0.1		%
		1	Тур	Maxi	
I _o	Offset current @ $\mathbf{I}_{p} = 0$, $\mathbf{T}_{A} = 25^{\circ}$ C			Maxi ± 0.5	mΑ
I _о I _{ом}	Magnetic offset current @ $I_p = 0$ and specific	ecified R _м ,			
0	after an overl	oad of 3 x I _{PN}		± 0.2	mΑ
I_{OT}		5°C + 80°C	± 0.2	± 0.4	mΑ
01	- 40)°C 25°C		± 1.5	mΑ
t,	Response time 2) to 90 % of I _{PN} step		< 1		μs
di/dt	di/dt accurately followed		> 100		A/µs
BW	Frequency bandwidth (- 1 dB)		DC 1	50	kHz


General data

T_{A}	Ambient operating temperature		- 40 + 80	°C
T_s	Ambient storage temperature		- 50 + 85	°C
$\mathbf{R}_{\mathrm{s}}^{\mathrm{r}}$	Secondary coil resistance @	$T_A = 70$ °C	24.8	Ω
		$T_A = 80^{\circ}C$	25.6	Ω
m	Mass		1.5	kg
	Standards		EN 50155: 19	995

Notes: 1) ± 15 V (- 5 %) .. ± 24 V (+ 20 %)

²⁾ With a di/dt of 100 A/µs.

$I_{PN} = 2000 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- \bullet $V_{\rm C}$ = $\pm 15 ... 24 V^{(1)}$
- $V_d = 10 \,\text{kV}^{3)}$
- $T_{\Delta} = -40^{\circ}C ... + 80^{\circ}C$
- Internal shield connected to V_c -
- Connection to secondary circuit on LEMO EEJ.1B.305.CYC.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- · Auxiliary converter
- Battery charger.

Application Domain

• Traction.

Current transducer LF 2005-S/SP13

Iso	Isolation characteristics				
\mathbf{V}_{d}	Rms voltage for AC isolation test, 50 Hz, 1 min	10 ³⁾	kV V		
V _e	Rms voltage for partial discharge extinction @ 10pC	Mini > 4.8	kV		
		Mini			
dCp	Creepage distance	43.2	m m		
dCl	Clearance distance	42.2	m m		
CTI	Comparative Tracking Index (Group I)	600			

Notes: 3) Between primary and secondary + shield

4) Between secondary and shield.

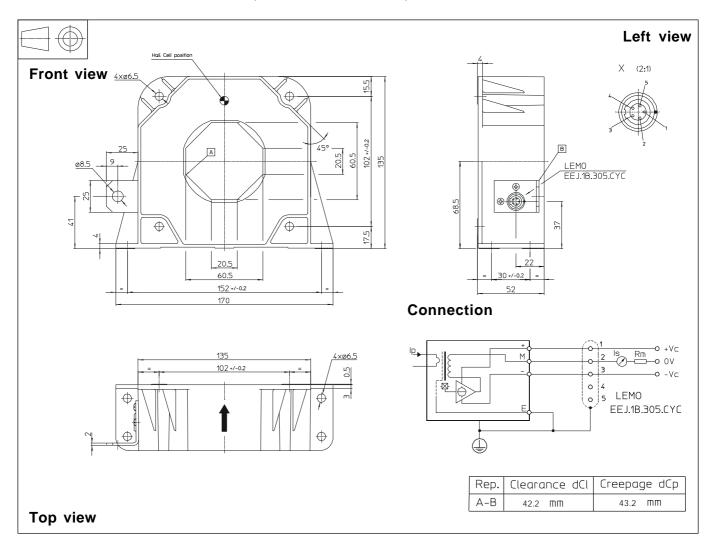
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LF 2005-S/SP13 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening Vertical or flat position Recommended fastening torque
- Primary through-hole Or
- Connection of secondary
- Connection to the ground
- ± 0.5 mm
- 4 holes Ø 6.5 mm
- 4 M6 steel screws
- 5.5 Nm or 4.07 Lb. Ft.
- 60.5 x 20.5 mm ∅ maxi 57 mm
- 2 maxi 37 mm
- LEMO EEJ.1B.305.CYC
- hole \varnothing 8.5 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.